Média móvel Este exemplo ensina como calcular a média móvel de uma série temporal no Excel. Um avearge móvel é usado para suavizar irregularidades (picos e vales) para reconhecer facilmente as tendências. 1. Primeiro, vamos dar uma olhada em nossas séries temporais. 2. Na guia Dados, clique em Análise de dados. Nota: não consigo encontrar o botão Análise de dados Clique aqui para carregar o complemento Analysis ToolPak. 3. Selecione Média móvel e clique em OK. 4. Clique na caixa Intervalo de entrada e selecione o intervalo B2: M2. 5. Clique na caixa Intervalo e digite 6. 6. Clique na caixa Gama de saída e selecione a célula B3. 8. Traçar um gráfico desses valores. Explicação: porque definimos o intervalo para 6, a média móvel é a média dos 5 pontos de dados anteriores e o ponto de dados atual. Como resultado, picos e vales são alisados. O gráfico mostra uma tendência crescente. O Excel não pode calcular a média móvel para os primeiros 5 pontos de dados porque não há suficientes pontos de dados anteriores. 9. Repita os passos 2 a 8 para o intervalo 2 e o intervalo 4. Conclusão: quanto maior o intervalo, mais os picos e os vales são alisados. Quanto menor o intervalo, mais perto as médias móveis são para os pontos reais de dados.8.4 Modelos médios em movimento Ao invés de usar valores passados da variável de previsão em uma regressão, um modelo de média móvel usa erros de previsão passados em um modelo similar a regressão. Y c e theta e theta e dots theta e, onde et é ruído branco. Nós nos referimos a isso como um modelo de MA (q). Claro, não observamos os valores de et, por isso não é realmente regressão no sentido usual. Observe que cada valor de yt pode ser pensado como uma média móvel ponderada dos últimos erros de previsão. No entanto, os modelos de média móvel não devem ser confundidos com o alisamento médio móvel que discutimos no Capítulo 6. Um modelo de média móvel é usado para prever valores futuros, ao mesmo tempo em que o alisamento médio médio é usado para estimar o ciclo de tendência dos valores passados. Figura 8.6: Dois exemplos de dados de modelos em média móveis com diferentes parâmetros. Esquerda: MA (1) com y t 20e t 0.8e t-1. Direito: MA (2) com t e t - e t-1 0.8e t-2. Em ambos os casos, e t é normalmente distribuído ruído branco com zero médio e variância um. A Figura 8.6 mostra alguns dados de um modelo MA (1) e um modelo MA (2). Alterando os parâmetros theta1, dots, thetaq resulta em diferentes padrões de séries temporais. Tal como acontece com os modelos autorregressivos, a variância do termo de erro e apenas alterará a escala da série e não os padrões. É possível escrever qualquer modelo AR (p) estacionário como modelo MA (infty). Por exemplo, usando a substituição repetida, podemos demonstrar isso para um modelo AR (1): begin yt amp phi1y et amp phi1 (phi1y e) et amp phi12y phi1 e amp phi13y phi12e phi1 e et amptext end Provided -1 lt phi1 lt 1, o valor de phi1k diminuirá quando k for maior. Então, eventualmente, obtemos et et phi1 e phi12 e phi13 e cdots, um processo de MA (infty). O resultado reverso é válido se importamos algumas restrições nos parâmetros MA. Em seguida, o modelo MA é chamado de inversível. Ou seja, podemos escrever qualquer processo inversor de MA (q) como um processo AR (infty). Os modelos invertidos não são simplesmente para nos permitir converter de modelos MA para modelos AR. Eles também têm algumas propriedades matemáticas que os tornam mais fáceis de usar na prática. As restrições de invertibilidade são semelhantes às restrições de estacionaria. Para um modelo MA (1): -1lttheta1lt1. Para um modelo MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1 - theta2 lt 1. Condições mais complicadas mantêm-se para qge3. Novamente, R irá cuidar desses constrangimentos ao estimar os modelos.
No comments:
Post a Comment